A penalized likelihood approach to magnetic resonance image reconstruction.

نویسندگان

  • Vera L Bulaevskaya
  • Gary W Oehlert
چکیده

Currently, images acquired via magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI) technology are reconstructed using the discrete inverse Fourier transform. While computationally convenient, this approach is not able to filter out noise. This is a serious limitation because the amount of noise in MRI and fMRI can be substantial. In this paper, we propose an alternative approach to reconstruction, based on penalized likelihood methodology. In particular, we focus on non-linear shrinkage estimators and show that this approach achieves a great reduction in integrated mean squared error (IMSE) of the estimated image with respect to the currently used estimator. This approach is extremely fast and easy to implement computationally. In addition, it can be combined with various alternative approaches to MR image reconstruction and can be easily adapted to other, non-MRI contexts, in which the observed data and the quantities of interest are related via a linear transform.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint Estimation for Incorporating MRI Anatomic Images into SPECT Reconstruction

To improve SPECT reconstruction using spatiallycorrelated magnetic resonance(MR) images as a source of side information, one must account for mismatch between MRI anatomical information and SPECT functional information. We investigate an approach which incorporates the anatomical information into SPECT reconstruction by using region labels representing the anatomical regions extracted from MRI....

متن کامل

Spatial Resolution Properties of Penalized-Likelihood Image Reconstruction: Space-Invariant Tomograp - Image Processing, IEEE Transactions on

This paper examines the spatial resolution properties of penalized-likelihood image reconstruction methods by analyzing the local impulse response. The analysis shows that standard regularization penalties induce space-variant local impulse response functions, even for space-invariant tomographic systems. Paradoxically, for emission image reconstruction, the local resolution is generally poores...

متن کامل

Spatial Resolution in Penalized-Likelihood Image Reconstruction

Spatial Resolution in Penalized-Likelihood Image Reconstruction byJoseph Webster Stayman Chair: Jeffrey A. Fessler Penalized-likelihood methods have been used widely in image reconstruction sincethey can model both the imaging system geometry and measurement noise verywell. However, images reconstructed by conventional penalized-likelihood methodsare subject to anisotropic and s...

متن کامل

New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor

Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...

متن کامل

Algorithms for Non-Negatively Constrained Maximum Penalized Likelihood Reconstruction in Tomographic Imaging

Image reconstruction is a key component in many medical imaging modalities. The problem of image reconstruction can be viewed as a special inverse problem where the unknown image pixel intensities are estimated from the observed measurements. Since the measurements are usually noise contaminated, statistical reconstruction methods are preferred. In this paper we review some non-negatively const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2007